Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide association study on stem rust resistance in Kazakh spring barley lines.

Identifieur interne : 000390 ( Main/Exploration ); précédent : 000389; suivant : 000391

Genome-wide association study on stem rust resistance in Kazakh spring barley lines.

Auteurs : Yerlan Turuspekov [Kazakhstan] ; Danara Ormanbekova [Kazakhstan] ; Aralbek Rsaliev [Kazakhstan] ; Saule Abugalieva [Kazakhstan]

Source :

RBID : pubmed:26821649

Descripteurs français

English descriptors

Abstract

BACKGROUND

Stem rust (SR) is one of the most economically devastating barley diseases in Kazakhstan, and in some years it causes up to 50 % of yield losses. Routine conventional breeding for resistance to stem rust is almost always in progress in all Kazakhstan breeding stations. However, molecular marker based approach towards new SR resistance genes identification and relevant marker-assisted selection had never been employed in Kazakhstan yet. In this study, as a preliminary step the GWAS (genome-wide association study) mapping was applied in attempt to identify reliable SNP markers and quantitative trait loci (QTL) associated with resistance to SR.

RESULTS

Barley collection of 92 commercial cultivars and promising lines was genotyped using a high-throughput single nucleotide polymorphism (9,000 SNP) Illumina iSelect array. 6,970 SNPs out of 9,000 total were polymorphic and scorable. 5,050 SNPs out of 6,970 passed filtering threshold and were used for association mapping (AM). All 92 accessions were phenotyped for resistance to SR by observing adult plants in artificially infected plots at the Research Institute for Biological Safety Problems in Dzhambul region of Kazakhstan. GLM analysis allowed the identification of 15 SNPs associated with the resistance at the heading time (HA) phase, and 2 SNPs at the seed's milky-waxy maturity (SM) phase. However, after application of 5 % Bonferroni multiple test correction, only 2 SNPs at the HA stage on the same position of chromosome 6H can be claimed as reliable markers for SR resistance. The MLM analysis after the Bonferroni correction did not reveal any associations in this study, although distribution lines in the quantile-quantile (QQ) plot indicates that overcorrection in the test due to both Q and K matrices usage.

CONCLUSIONS

Obtained data suggest that genome wide genotyping of 92 spring barley accessions from Kazakhstan with 9 K Illumina SNP array was highly efficient. Linkage disequilibrium based mapping approach allowed the identification of highly significant QTL for the SR resistance at the HA phase of growth on chromosome 6H. On the other hand, no significant QTL was detected at the SM phase, assuming that for a successful GWASmapping experiment a larger size population with more diverse genetic background should be tested. Obtained results provide additional information towards better understanding of SR resistance in barley.


DOI: 10.1186/s12870-015-0686-z
PubMed: 26821649
PubMed Central: PMC4895317


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide association study on stem rust resistance in Kazakh spring barley lines.</title>
<author>
<name sortKey="Turuspekov, Yerlan" sort="Turuspekov, Yerlan" uniqKey="Turuspekov Y" first="Yerlan" last="Turuspekov">Yerlan Turuspekov</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. yerlant@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology, Almaty</wicri:regionArea>
<placeName>
<settlement type="city">Almaty</settlement>
<region nuts="2">Oblys d'Almaty</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ormanbekova, Danara" sort="Ormanbekova, Danara" uniqKey="Ormanbekova D" first="Danara" last="Ormanbekova">Danara Ormanbekova</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. or.danara@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology, Almaty</wicri:regionArea>
<placeName>
<settlement type="city">Almaty</settlement>
<region nuts="2">Oblys d'Almaty</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rsaliev, Aralbek" sort="Rsaliev, Aralbek" uniqKey="Rsaliev A" first="Aralbek" last="Rsaliev">Aralbek Rsaliev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute for Biological Safety Problems, Gvardeiskiy vil, Dzhambul region, Kazakhstan. aralbek@mail.ru.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Research Institute for Biological Safety Problems, Gvardeiskiy vil, Dzhambul region</wicri:regionArea>
<wicri:noRegion>Dzhambul region</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abugalieva, Saule" sort="Abugalieva, Saule" uniqKey="Abugalieva S" first="Saule" last="Abugalieva">Saule Abugalieva</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. absaule@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology, Almaty</wicri:regionArea>
<placeName>
<settlement type="city">Almaty</settlement>
<region nuts="2">Oblys d'Almaty</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26821649</idno>
<idno type="pmid">26821649</idno>
<idno type="doi">10.1186/s12870-015-0686-z</idno>
<idno type="pmc">PMC4895317</idno>
<idno type="wicri:Area/Main/Corpus">000408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000408</idno>
<idno type="wicri:Area/Main/Curation">000408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000408</idno>
<idno type="wicri:Area/Main/Exploration">000408</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide association study on stem rust resistance in Kazakh spring barley lines.</title>
<author>
<name sortKey="Turuspekov, Yerlan" sort="Turuspekov, Yerlan" uniqKey="Turuspekov Y" first="Yerlan" last="Turuspekov">Yerlan Turuspekov</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. yerlant@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology, Almaty</wicri:regionArea>
<placeName>
<settlement type="city">Almaty</settlement>
<region nuts="2">Oblys d'Almaty</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ormanbekova, Danara" sort="Ormanbekova, Danara" uniqKey="Ormanbekova D" first="Danara" last="Ormanbekova">Danara Ormanbekova</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. or.danara@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology, Almaty</wicri:regionArea>
<placeName>
<settlement type="city">Almaty</settlement>
<region nuts="2">Oblys d'Almaty</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rsaliev, Aralbek" sort="Rsaliev, Aralbek" uniqKey="Rsaliev A" first="Aralbek" last="Rsaliev">Aralbek Rsaliev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute for Biological Safety Problems, Gvardeiskiy vil, Dzhambul region, Kazakhstan. aralbek@mail.ru.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Research Institute for Biological Safety Problems, Gvardeiskiy vil, Dzhambul region</wicri:regionArea>
<wicri:noRegion>Dzhambul region</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abugalieva, Saule" sort="Abugalieva, Saule" uniqKey="Abugalieva S" first="Saule" last="Abugalieva">Saule Abugalieva</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. absaule@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Kazakhstan</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology, Almaty</wicri:regionArea>
<placeName>
<settlement type="city">Almaty</settlement>
<region nuts="2">Oblys d'Almaty</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (physiology)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Hordeum (genetics)</term>
<term>Hordeum (microbiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Stems (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (physiologie)</term>
<term>Génome végétal (MeSH)</term>
<term>Hordeum (génétique)</term>
<term>Hordeum (microbiologie)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Tiges de plante (MeSH)</term>
<term>Étude d'association pangénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hordeum</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hordeum</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Hordeum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hordeum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Plant</term>
<term>Genome-Wide Association Study</term>
<term>Plant Stems</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Locus de caractère quantitatif</term>
<term>Marqueurs génétiques</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Tiges de plante</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Stem rust (SR) is one of the most economically devastating barley diseases in Kazakhstan, and in some years it causes up to 50 % of yield losses. Routine conventional breeding for resistance to stem rust is almost always in progress in all Kazakhstan breeding stations. However, molecular marker based approach towards new SR resistance genes identification and relevant marker-assisted selection had never been employed in Kazakhstan yet. In this study, as a preliminary step the GWAS (genome-wide association study) mapping was applied in attempt to identify reliable SNP markers and quantitative trait loci (QTL) associated with resistance to SR.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Barley collection of 92 commercial cultivars and promising lines was genotyped using a high-throughput single nucleotide polymorphism (9,000 SNP) Illumina iSelect array. 6,970 SNPs out of 9,000 total were polymorphic and scorable. 5,050 SNPs out of 6,970 passed filtering threshold and were used for association mapping (AM). All 92 accessions were phenotyped for resistance to SR by observing adult plants in artificially infected plots at the Research Institute for Biological Safety Problems in Dzhambul region of Kazakhstan. GLM analysis allowed the identification of 15 SNPs associated with the resistance at the heading time (HA) phase, and 2 SNPs at the seed's milky-waxy maturity (SM) phase. However, after application of 5 % Bonferroni multiple test correction, only 2 SNPs at the HA stage on the same position of chromosome 6H can be claimed as reliable markers for SR resistance. The MLM analysis after the Bonferroni correction did not reveal any associations in this study, although distribution lines in the quantile-quantile (QQ) plot indicates that overcorrection in the test due to both Q and K matrices usage.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Obtained data suggest that genome wide genotyping of 92 spring barley accessions from Kazakhstan with 9 K Illumina SNP array was highly efficient. Linkage disequilibrium based mapping approach allowed the identification of highly significant QTL for the SR resistance at the HA phase of growth on chromosome 6H. On the other hand, no significant QTL was detected at the SM phase, assuming that for a successful GWASmapping experiment a larger size population with more diverse genetic background should be tested. Obtained results provide additional information towards better understanding of SR resistance in barley.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26821649</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16 Suppl 1</Volume>
<PubDate>
<Year>2016</Year>
<Month>Jan</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide association study on stem rust resistance in Kazakh spring barley lines.</ArticleTitle>
<Pagination>
<MedlinePgn>6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-015-0686-z</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Stem rust (SR) is one of the most economically devastating barley diseases in Kazakhstan, and in some years it causes up to 50 % of yield losses. Routine conventional breeding for resistance to stem rust is almost always in progress in all Kazakhstan breeding stations. However, molecular marker based approach towards new SR resistance genes identification and relevant marker-assisted selection had never been employed in Kazakhstan yet. In this study, as a preliminary step the GWAS (genome-wide association study) mapping was applied in attempt to identify reliable SNP markers and quantitative trait loci (QTL) associated with resistance to SR.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Barley collection of 92 commercial cultivars and promising lines was genotyped using a high-throughput single nucleotide polymorphism (9,000 SNP) Illumina iSelect array. 6,970 SNPs out of 9,000 total were polymorphic and scorable. 5,050 SNPs out of 6,970 passed filtering threshold and were used for association mapping (AM). All 92 accessions were phenotyped for resistance to SR by observing adult plants in artificially infected plots at the Research Institute for Biological Safety Problems in Dzhambul region of Kazakhstan. GLM analysis allowed the identification of 15 SNPs associated with the resistance at the heading time (HA) phase, and 2 SNPs at the seed's milky-waxy maturity (SM) phase. However, after application of 5 % Bonferroni multiple test correction, only 2 SNPs at the HA stage on the same position of chromosome 6H can be claimed as reliable markers for SR resistance. The MLM analysis after the Bonferroni correction did not reveal any associations in this study, although distribution lines in the quantile-quantile (QQ) plot indicates that overcorrection in the test due to both Q and K matrices usage.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Obtained data suggest that genome wide genotyping of 92 spring barley accessions from Kazakhstan with 9 K Illumina SNP array was highly efficient. Linkage disequilibrium based mapping approach allowed the identification of highly significant QTL for the SR resistance at the HA phase of growth on chromosome 6H. On the other hand, no significant QTL was detected at the SM phase, assuming that for a successful GWASmapping experiment a larger size population with more diverse genetic background should be tested. Obtained results provide additional information towards better understanding of SR resistance in barley.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Turuspekov</LastName>
<ForeName>Yerlan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. yerlant@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ormanbekova</LastName>
<ForeName>Danara</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. or.danara@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rsaliev</LastName>
<ForeName>Aralbek</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Research Institute for Biological Safety Problems, Gvardeiskiy vil, Dzhambul region, Kazakhstan. aralbek@mail.ru.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abugalieva</LastName>
<ForeName>Saule</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. absaule@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26821649</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-015-0686-z</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-015-0686-z</ArticleId>
<ArticleId IdType="pmc">PMC4895317</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Apr;99(4):339-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:399-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 2000 Oct;264(3):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11085268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jul;7(7):e1002208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Nov;208(3):817-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26061418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Apr;42(4):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20208535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Mar 26;8(7):R226-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Jan 20;5(3):449-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Feb;38(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 9;103(19):7518-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Oct;99(10):1135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Dec;44(12):1388-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23160098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Oct 17;15:907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25326272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetika. 2013 Feb;49(2):224-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23668088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Apr;26(4):407-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23216085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 24;9(11):e113120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25420105</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Kazakhstan</li>
</country>
<region>
<li>Oblys d'Almaty</li>
</region>
<settlement>
<li>Almaty</li>
</settlement>
</list>
<tree>
<country name="Kazakhstan">
<region name="Oblys d'Almaty">
<name sortKey="Turuspekov, Yerlan" sort="Turuspekov, Yerlan" uniqKey="Turuspekov Y" first="Yerlan" last="Turuspekov">Yerlan Turuspekov</name>
</region>
<name sortKey="Abugalieva, Saule" sort="Abugalieva, Saule" uniqKey="Abugalieva S" first="Saule" last="Abugalieva">Saule Abugalieva</name>
<name sortKey="Ormanbekova, Danara" sort="Ormanbekova, Danara" uniqKey="Ormanbekova D" first="Danara" last="Ormanbekova">Danara Ormanbekova</name>
<name sortKey="Rsaliev, Aralbek" sort="Rsaliev, Aralbek" uniqKey="Rsaliev A" first="Aralbek" last="Rsaliev">Aralbek Rsaliev</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000390 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000390 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26821649
   |texte=   Genome-wide association study on stem rust resistance in Kazakh spring barley lines.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26821649" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020